
2 Linearity, Superposition Principle, and Clas-

sification of PDEs

2.1 Linear Equations/Operators

Linearity is a property of differential operators and follows from the basic
linearity of differentiation. The property is key to most methodology dis-
cussed in this course. For example, from the last section, we considered
L = ∂2

∂x2
+ ∂2

∂y2
. Let c1, c2 be arbitrary constants and u1 and u2 be arbitrary

C2 functions. Then

L(c1u1 + c2u2) = (c1u1 + c2u2)xx + (c1u1 + c2u2)yy

= c1u1xx + c2u2xx + c1u1yy + c2u2yy

= c1(u1xx + u1yy) + c2(u2xx + u2yy)

= c1L(u1) + c2L(u2).

Thus, L is a linear operator and Laplace’s equation is a linear equation.

Definition: An operator L is linear if for any functions u1, u2 ∈ dom{L},
and any constants c1, c2, L(c1u1 + c2u2) = c1L(u1) + c2L(u2).

This property can be checked in two pieces, that is, by showing L(u1 +
u2) = L(u1)+L(u2), then showing L(cu) = cL(u). Such a property allows us
to “build a solution” from simpler components or gives us the flexibility to
satisfy side constraints. Hence, we will restrict the class of problems mostly
to linear equations in this course. Of the examples given in Section 1, only
the differential operators in (13), and (15) (and the equations in the examples
discussing minimal surfaces and halftoning) are nonlinear (not-linear).

Example: Let L(u) := ut + cu2ux = ut + c
3
(u3)x. Then note that

L(ku) = kut + c
3
k3(u3)x 6= kL(u) = kut + c

3
k(u3)x.

Remark: Linearity is a property of the PDE operator, though we speak about
an equation being linear. For example, is xuxy + 4y2u = sin(x) a linear equa-

tion? It is, but here is how we arrive at that. Let L := x ∂2

∂x∂y
+ 4y2. Then

you can show that L satisfies the above definition, that is, L(c1u1 + c2u2) =
c1L(u1) + c2L(u2). The (non-homogeneous) terms that do not involve the
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unknown, or any of its derivatives, is not material to the definition of linearity.

2.2 First-order Equations in Two Independent Vari-
ables

If the two variables are represented by x and y, then we have the general
form

F (x, y, u(x, y),
∂u

∂x
(x, y),

∂u

∂y
(x, y)) = 0.

Such general first-order PDEs are complicated to solve, and often do not
have a solution. An actual example of this case is

(
∂u

∂x
)2 + (

∂u

∂y
)2 + 1 = 0.

A first order linear PDE in two variables has the form

a
∂u

∂x
+ b

∂u

∂y
+ cu = 0

where the coefficients a, b, c depend, at most, on x and y (but not on u or its
derivatives). While equation (15) in Section 1 of these Notes is not linear,
∂u
∂x

+ y ∂u
∂y

= 0 is linear. In the section on first-order PDEs we will further
classify these equations based on structure. Of course one can discuss PDEs
(both first-order and higher order) with more than two independent variables,
but we will rarely do so since every technique we discuss and the physical
problems mentioned can be discussed for functions of two variables without
the burden of the extra abstract notation required by the more general case.

A second-order linear PDE in two independent variables (again call them
x and y) has the form

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu+G = 0. (1)

where A,B,C,D,E, F,G are functions that depend at most on x, y. (Writing
2B here instead of B is a convenience for classification purposes; see below.)

Examples : From Section 1, for the one-dimensional wave equation (2), we
can consider A = c2, C = −1 (identifying y with t), and B = D = E = F =
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G = 0. A one space dimensional model from the study of gas dynamics is
Burger’s equation,

ε
∂2u

∂x2
− ∂u

∂t
− u∂u

∂x
= 0

Thus, A = ε, D = −u, E = −1, with the rest of the coefficients being zero.
But Burger’s equation is nonlinear because D depends on the dependent
variable u.
Remark : In (1) the unknowns are u, ux, uy, uxx, uxy, uyy, so (1) represents a
summation of terms with at most one unknown in each term, and that term
is proportional to the unknown. That is, as a linear equation, (1) represents
a “monomial” in at most 6 unknowns.

Exercises : Which of the following equations are linear1:

1. uxx + x2ux − uyy = y3

2. uxx − uux + uyy = 0

3. sin(xy)uxx − cos(xy)uxy = 0

4. uyux − uyy = 0

Homogeneous versus Nonhomogeneous Equations
In (1) the term G represents all such terms in the equation that do not de-
pend on u or any of its derivatives. If, in the domain where the equation
holds, G ≡ 0, the equation is homogeneous. Otherwise, if G is not zero
somewhere in its domain, the equation is nonhomogeneous.

Remark : When checking an equation for the linearity property, the definition
considers the operator without the G term. For example,

ut + νux = Duxx + ae−(x−x0)
2
, where x0, a, ν are constants

represents a linear equation which is nonhomogeneous because of the ae−(x−x0)
2

term. The operator L = ∂
∂t

+ ν ∂
∂x
− D ∂2

∂x2
satisfies the definition of linear

operator. The νux term represents an advection term, a kind of transport
mechanism. Think of u representing a concentration of a pollutant in the air
(or river) being diffused throughout the environment (resp. the river) with

1Answers: equations 1 and 3 are linear, and 2 and 4 are nonlinear. Why?

3



diffusion coefficient D, and being convected due to a steady wind (or current).
The nonhomogeneity ae−(x−x0)

2
is considered a source term for the pollutant.

Remark : Recall from your ODE course that you derive a fundamental set of
solutions for a homogeneous equation, then use that knowledge in a variation-
of-parameters method, or undetermined-coefficients method to construct a
particular solution to the nonhomogeneous equation. That is, to solve a non-
homogeneous equation, you use knowledge gained from solving the (reduced)
homogenous equation. We will take the same basic approach in PDEs, first
solving homogenous equations, then using knowledge of the form to attack
nonhomogeneous equations. This will be particularly evident when I discuss
boundary value problems (spatial domains are bounded).

2.3 Superposition Principle and the Subtraction Prin-
ciple

If u1, u2, . . . , uN are solutions to the homogeneous linear PDE L(u) = 0, then
so is the linear combination u = c1u1 + c2u2 + . . .+ cNuN , where the c′js are
arbitrary constants. This is just a consequence of the linearity property of
L:
L(c1u1 + c2u2 + . . .+ cNuN) = c1L(u1) + c2L(u2) + . . .+ cNL(uN) = 0 + 0 +
. . .+ 0 = 0.

This is the codification of the Superposition principle.

Remark : This statement does not apply to nonhomogenous equations. For
example, suppose u1, u2 are two solutions to uxx + uyy = 1. then u = u1 + u2
is a solution to uxx + uyy = 2, not uxx + uyy = 1.

For the Subtraction Principle, if u1 and u2 are two solutions to a nonho-
mogeneous linear equation, the u = u1− u2 is a solution to the associated
homogeneous equation. (By linearity of the operator, if L(u1) = f and
L(u2) = f , then L(u1 − u2) = L(u1)− L(u2) = f − f = 0.)
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2.4 Classification of 2nd order, Linear, PDEs in Two
Independent Variables

Classification of equation (1) concerns just the principle part of the PDE
operator, namely A∂2/∂x2 + 2B∂2/∂x∂y + C∂2/∂y2, so the classification
below also applies to nonlinear equations of the form

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+R(x, y, u,

∂u

∂x
,
∂u

∂y
) = 0 .

The principle part of the PDE operator drives the main characteristics of
solutions to the equation.
Definition: The discriminant is D := B2 − AC. If

1. D > 0, then equation (1) is hyperbolic;

2. D < 0, then equation (1) is elliptic;

3. D = 0, then equation (1) is parabolic

Remarks
Some texts will write the principle part of the operator with a B instead of
2B; in this case the discriminant is defined as D := B2 − 4AC. Then the
classification again follows. But do NOT mix up the operator notation and
the discriminant definition.

We will be driven by this classification. So the first part of the course
really handles equations in each category separately. This is quite different
than the case of 2nd order linear ODEs.

The PDE coefficients A,B,C can be functions of x and y, so the definition
of hyperbolic, elliptic, parabolic is local ; that is, as (x, y) ranges over the
equations domain, the equation may change type. Such equations are change-
of-type equations. An example of this is Tricomi’s equation uxx−xuyy = 0,
which was originally introduced to try to understand linear transonic flow
better. (The linearized equations for transonic flow, that is flow past an
object moving near the speed of sound, is change-of-type, but harder to
analyze than Tricomi’s equation.) Note in this case that D = x, so the
equation is hyperbolic for x > 0, elliptic for x < 0, and x = 0 is a parabolic
line for the equation.

Why the classification? Because solution behavior has qualitative simi-
larity for equations pulled out of the same “bucket”, but solution behavior is
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quite different between equations pulled from different buckets (if we consider
the equations falling into one of the three buckets: the hyperbolic bucket,
the parabolic bucket, and the elliptic bucket). For example, discontinuities in
boundary data for the wave equation (2) in Section 1, or the one-space ver-
sion (9), will be propagated throughout the domain along paths called char-
acteristics. So, the “smoothness” of solutions of these hyperbolic equations
will be no more so than the boundary data. However, the heat equation, or
Black-Scholes equation (11), which come from the parabolic bucket, will have
solutions that are infinitely differentiable independent of any non-smoothness
of the boundary data. Put another way, such “boundary information” like
singularities, is lost immediately in time due to the diffusion process inherent
in parabolic equations.

Examples : x2uxx + 2xuxt + utt = ut has A = x2, B = x, C = 1, so
D = x2 − x2 = 0; so the equation is parabolic everywhere. However,
yuxx − 2uxy + xuyy = 0 has A = y, B = −1, and C = x, so D = 1− xy. In
this case the equation is parabolic on the hyperbola xy = 1, elliptic in the
two disconnected convex regions {xy > 1}, and hyperbolic in the connected
region {xy < 1}.

Exercises : Classify the following PDEs; that is, what region is the equation
elliptic, hyperbolic, or parabolic?2

1. xuxx − 4uxt = 0

2. uxx − 6uxy + 12uyy = 0

3. x2uxx − y2uyy = 0

4. sin(xy)uxy = 0

5. (1 + x)uxx + 2xyuxy − y2uyy = 0

2Equation 1 is hyperbolic everywhere, and equation 2 is elliptic everywhere; equation
3 is parabolic on the principle axes, and hyperbolic elsewhere; equation 4 is hyperbolic
except where sin(xy) = 0; equation 5 is parabolic on the x-axis, and hyperbolic elsewhere.
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2.5 Comment on what will and will not be discussed
in these Notes

The main equations to be solved under various circumstances are the heat,
wave, and Laplace’s equations, which represent prototypical equations from
the parabolic, hyperbolic, and elliptic “buckets”. We will briefly discuss
Poisson’s equation (nonhomogeneous Laplace’s equation), the telegrapher’s
equation, and the beam equation. The telegrapher’s equation is a wave equa-
tion with lower order terms that allow us to introduce concepts like dissipa-
tion and dispersion, which are important concepts in a variety of physical
circumstances. The beam equation, or more precisely the Euler-Bernoulli
beam equation, is a classical higher-order equation that is still physically
important and worth being introduced to. We will show that our meth-
ods which we developed for second-order equations can be applied to this
fourth-order equation. We will also take a little time to solve some classes of
first-order equations since there are interesting physical problems that lead
to such equations (like (15) in Section 1).

We will not have time to delve into systems of PDEs. We will not discuss
equations like the Korteweg-deVries equation (13) of Section 1, or the eikonal
equation

(ux)
2 + (uy)

2 = c2

or the sine-Gordon equation

utt − c2∇2u+ sin(u) = 0

because they are nonlinear. They are interesting equations in their own right,
but techniques for studying them go beyond this course. We will also not
study problems like (12) of Section 1 because all parameters in our equations
in this course will be considered real numbers.

As previously mentioned we will first study problems that are defined,
spatially, on the real line (no finite spatial boundaries) to characterize some
important differences in solution behavior between parabolic and hyperbolic
equations. Then we will add a boundary to see how boundaries can reflect
or absorb information from the solution. Finally, we will examine problems
on bounded domains most relevant to various physical situations.

Below are a few exercises I recommend you go through.

1. Define the following:
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(a) order of a pde

(b) superposition principle

(c) classical solution

(d) elliptic pde

2. Which of the following operators are linear:

(a) Lu = ux + xuy

(b) Lu = ux + uuy

(c) Lu = ux + u2y

(d) Lu =
√

1 + x2 cos(y)ux + uyxy − tan−1(x/y)u

3. For the following equations, give the order, and state whether each is
linear or nonlinear. If it is linear, indicate whether it is homogeneous
or nonhomogeneous.

(a) ut − uxx + 1 = 0

(b) ut − uxx + xu = 0

(c) ut − uxxt + uux = 0

(d) utt − uxx + x2 = 0

(e) iut − uxx + u/x = 0

(f) ux + eyuy = 0

(g) ut − uxxxx +
√

1 + u = 0

4. For the following, show the given function solves the given equation:

(a) u(x, y) = ln(
√
x2 + y2), uxx + uyy = 0

(b) u(x, y) = f(x)g(y), uuxy = uxuy, where f, g are arbitrary differ-
entiable functions of one variable.

(c) u(x, t) = 1
2
√
πDt

e−x
2/4Dt, ut −Duxx = 0 (D > 0 is a constant)

(d) u(x, t) = x2 + 2t, ut − uxx = 0

(e) u(x, t) = e−3t sin(x), ut − 3uxx = 0

5. For what values of a and b will the following functions u(x, y) solve the
given pde?
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(a) u(x, y) = eat sin(bx), for ut −Duxx = 0

(b) u(x, y) = bx+ f(e−axy), for ux− yuy = 0, where f is an arbitrary
differentiable function.
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